
TDXploit: Novel Techniques for Single-Stepping and Cache Attacks on Intel TDX

Fabian Rauscher
Graz University of Technology

Luca Wilke
University of Lübeck

Hannes Weissteiner
Graz University of Technology

Thomas Eisenbarth
University of Lübeck

Daniel Gruss
Graz University of Technology

Abstract
Intel TDX is a trusted execution environment (TEE) protect-
ing arbitrary code, e.g., an entire OS, from the host system in
trust domains (TDs). While TDX isolates the memory of TDs,
side channels are still a threat due to shared hardware. Prior
work showed that single-stepping is a powerful technique for
attacking TEEs. After TDX was found vulnerable to these
attacks, Intel improved their mitigations with TDX module
version 1.5.06, stopping all known single-stepping attacks.

In this paper, we introduce TDXploit, a novel technique
to revive single-stepping attacks on Intel TDX. TDXploit ex-
ploits a fundamental flaw in Intel’s single-stepping mitigation,
ironically, achieving a higher (>99.99 %) single-stepping ac-
curacy than without mitigations. We recover the mitigation’s
internal state using an attacker-controlled TD. We not only
predict the mitigation’s behavior without any side channel
but also manipulate it for reliable single- and multi-stepping.
TDXploit can perform one single-step every 3.7 ms. We eval-
uate TDXploit with an attack on ECDSA in OpenSSL. Fur-
thermore, we systematically evaluate 6 state-of-the-art side-
channel attack techniques on TDX and their compatibility
with TDXploit. A key finding is that clflush bypasses In-
tel’s defenses, allowing Flush+Flush attacks on TDX guest
physical memory. Compared to all previous Flush+Flush at-
tacks, our Flush+Flush attack requires no shared memory and
can target any memory location of a TD. We demonstrate the
impact of this finding in a full key recovery on an AES T-
Table implementation, requiring only 8986 encryption traces.
Finally, we combine our novel Flush+Flush with TDXploit
to leak TOTP secrets with a single trace. We conclude that
further mitigations against single-stepping and side channels
on TDX are necessary.

1 Introduction

Outsourcing tasks involving confidential data, e.g., customer
data and company secrets, to the cloud can be a threat to
data confidentiality and privacy as the cloud provider has

complete access to all the data when using traditional vir-
tual machines (VMs). Therefore, a data breach in a cloud
provider’s infrastructure can have severe consequences for
their customers. Trusted execution environments (TEEs) pro-
vide an environment where the host system does not have
access to the memory and register state of the application.
Traditional TEEs, e.g., Intel SGX, require applications to be
written specifically for this environment [13], limiting its ap-
plicability to a narrow set of use cases. Using a library OS
approach, prior work demonstrated that generic applications
can be ported to Intel SGX [47], but there are still several
limitations due to the process-scoped nature of SGX. The re-
cently introduced AMD SEV-SNP and Intel TDX extensions
are TEEs that allow entire VMs to run inside the secure en-
vironment, allowing the deployment of applications without
any TEE-specific adaptations.

As the TEE threat model includes a malicious host, the
attack surface of them is significantly larger than of non-TEE
environments [13]. Intel SGX, in particular, received a signif-
icant amount of attention from the scientific community [53].
Early works focused on cache attacks [9,16,35,42,54], demon-
strating that the isolation between the TEE and the rest of the
system is limited due to shared hardware. A very powerful at-
tack technique in the TEE threat model is single-stepping. The
ability to single-step TEEs can be used to mount attacks such
as instruction counting [36], determining executed instruc-
tions through timing [52], targeting specific code parts with
side channels [15], or enabling new side-channel attacks that
would otherwise suffer from too much unrelated code being
executed [32, 35]. On SGX, Van Bulck et al. [51] use APIC
timer interrupts to force enclave exits for single-stepping.
Given these high-impact works, single-stepping is often con-
sidered the most powerful attack primitive on TEEs due to
the instruction-granular control over the victim’s execution.

Wilke et al. [56] demonstrated the first single-stepping
attacks on AMD SEV-SNP VMs. However, Intel TDX in-
cludes a mitigation against single-stepping, which detects
single-stepping attempts and steps a random number of guest
instructions. To bypass this detection, Wilke et al. [55] de-

crease the core frequency, allowing them to, again, use the
timer interrupt for the first single-stepping attack on TDX.
Intel mitigated their attack with TDX module version 1.5.06
by introducing Instruction-Count Single-Step Defense (IC-
SSD). ICSSD utilizes performance counters for the single-
stepping detection instead of the time-stamp counter, safe-
guarding the detection mechanism against CPU frequency
manipulations [24, §17.3.2]. Wilke et al. [55] also present
a second attack primitive that is not mitigated by ICSSD.
However, it only leaks fuzzy information about the number
of executed instructions and does not enable single-stepping.
Thus, currently, there is no known single-stepping primitive
for Intel TDX thwarting the most powerful attacks on TEEs.

In this paper, we introduce TDXploit, a novel single-
stepping attack on Intel TDX that completely bypasses Intel’s
recent ICSSD defense. TDXploit exploits a fundamental flaw
in Intel’s single-stepping mitigation, which, ironically, results
in a higher single-stepping accuracy (>99.99 %) than with-
out any mitigations without relying on side channels. Our
attack exploits two flaws in the random number generator
(RNG) of the mitigation: First, we exploit that the RNG state
is per-core, not per-TD. Second, we exploit that the state of
the RNG can be reverse-engineered with only 32 samples.
TDXploit continuously triggers Intel’s single-stepping mitiga-
tion using an attacker-controlled TD to recover the RNG state
and predict all future outputs, i.e., the number of instructions
executed by the next invocation of the mitigation. When the
next output is ‘1’, we schedule the victim TD, which then,
ironically, is single-stepped by the mitigation itself. After-
ward, we pause the victim until the RNG state allows for the
next single-step. In contrast to prior work, this also enables
controlled multi-stepping of TEEs for the first time.

We evaluate TDXploit in a microbenchmark on 2 end-to-
end attacks and 6 state-of-the-art side-channel attacks. For
this purpose, we systematically analyze the viability of 6
state-of-the-art side-channel attack techniques on Intel TDX,
comprising several cache attack variants and the PortSmash
attack. We find that 4 of the analyzed attacks work in host-
to-guest attacks, i.e., in the traditional TEE threat model. We
also find that 2 of the analyzed attacks work in guest-to-host
attacks, and 2 work in guest-to-guest attacks, i.e., in the ma-
licious TEE threat model, which has not been studied for
Intel TDX before. During our analysis, we discovered that
the clflush instruction ignores all the architectural isola-
tion used by TDX, allowing the host to perform Flush+Flush
attacks on the TD memory. Compared to non-TEE Flush+
Flush attacks, this does not require shared memory and can
target any TD memory location. Our results indicate a change
in the microarchitecture on 5th generation Xeon Scalable
CPUs, as prior work [1,55] that primarily analyzed 4th gener-
ation CPUs found clflush ineffective for flushing TD mem-
ory. Unlike cache attacks demonstrated in these works, our
clflush-based attack does not depend on parts of the coher-
ence protocol that will most likely be abandoned with future

CPU generations [24, §9.8]. We demonstrate the impact of our
Flush+Flush attack as a standalone primitive by performing a
full key recovery on the OpenSSL AES T-Table implementa-
tion that leaks the secret key after 8986 encryptions.

Our microbenchmark of the single-stepping primitive
shows that we can perform one single-step every 3.7 ms and
successfully single-step in >99.99 % of cases. We perform an
end-to-end attack on a time-based one-time password (TOTP)
token generation library used in prior work on AMD SEV [15].
While their attack uses performance counter leakage that is
already mitigated on Intel TDX, we use the Flush+Flush prim-
itive in combination with TDXploit to leak TOTP secret keys
with a single trace. In a second end-to-end attack, we re-create
the attack on OpenSSL ECDSA by Wilke et al. [55] that Intel
mitigated with ICSSD, showing again that TDXploit can reli-
ably bypass Intel’s mitigation. In line with previous results,
we leak the full secret key by observing 33 biased signatures,
which requires approximately 200000 signature generations
due to the low probability of the event that introduces the
bias.

In summary, our work makes the following contributions:

• We introduce TDXploit, exploiting a fundamental flaw
in Intel’s single-stepping mitigation that not only can be
bypassed but even yields a significantly more reliable
single-stepping attack than without any mitigation.

• We systematically analyze 6 state-of-the-art side-channel
attack techniques and their effectiveness with Intel TDX
in host-to-guest, guest-to-host, and guest-to-host attack
scenarios.

• We discover that clflush works on Intel TDX private
memory and demonstrate a Flush+Flush attack on TDX
guest physical memory, i.e., we do not require shared
memory and can attack all memory of the TD.

• We mount 2 end-to-end attacks with TDXploit, leaking
TOTP secret keys with a single trace and re-enabling the
previously mitigated attack on OpenSSL ECDSA.

Outline. We provide background in Section 2. In Section 3,
we introduce and evaluate our novel single-stepping attack
TDXploit. Next, we show Flush+Flush on TDX private mem-
ory and the potential of the attack in Section 4. Afterward,
we evaluate the applicability of several other state-of-the-art
side-channel attacks on TDX in Section 5. We discuss our
results and their impact in Section 6. Finally, we conclude in
Section 7.

Responsible Disclosure. We responsibly disclosed our find-
ings to Intel on November 27, 2024. Intel confirmed the issue
on January 22, 2025. They plan to publish the vulnerability
in August 2025.

2 Background

In this section, we first discuss different trusted execution
environments (TEEs). We then briefly discuss side channels,
in particular in the context of TEEs. Finally, we discuss single-
stepping as a powerful primitive for attacks on TEEs.

2.1 Trusted Execution Environments

TEEs are specialized environments that offer increased confi-
dentiality and integrity guarantees, even against privileged or
physical access [4, 7, 23, 24]. TEE technology is often seen as
split into two generations: The first generation targets primar-
ily personal computers, with the goal of protecting application
components from a malicious user or compromised system.
This is particularly interesting for storing and handling sensi-
tive data, e.g., fingerprints or cryptographic material, or for
digital rights management (DRM). Widely used examples are
Intel Software Guard Extensions (SGX) [23] and ARM Trust-
Zone [8], which have been practically deployed on millions
and billions of devices. The second generation targets primar-
ily cloud servers, with the goal of protecting entire VMs from
a malicious or compromised host. These VMs are also called
confidential virtual machines (CVMs). Practically deployed
are AMD Secure Encrypted Virtualization (SEV) [6] and
Intel Trust Domain Extensions (TDX) [22]. However, Arm
also published a draft for their own TEE for the cloud sce-
nario called Confidential Compute Architecture (CCA) [7].
Confidential virtual machines do not require writing code
specifically for the TEE; instead, they allow the entire VM to
run without modification in a secure environment.

2.2 Intel TDX

Intel Trust Domain Extensions (TDX) is Intel’s second gen-
eration TEE, which allows running entire VMs as TEEs on
Intel CPUs [24]. These guests are also referred to as trust
domains (TDs). Guest memory and stored guest state are en-
crypted and managed by the TDX module in the trust domain
virtual processor state area (TDVPS). The TDX module, an
open-source software module signed by Intel, runs in the new
SEAM root execution mode protected from the host and han-
dles interactions between the TEE and the host, e.g., to create
VMs, map pages, and run VMs. For VM management, Intel
TDX uses the existing Intel virtual machine extension (VMX).
To protect the guest’s memory while still allowing for fast
communication with the host, the guest’s physical memory
is split into a private encrypted part, only accessible by the
guest and the TDX module, and a shared part, accessible by
the host and the guest. The page tables of the private memory
are managed by the TDX module, while the host manages the
page tables of the shared memory. The guest can differentiate
between shared memory and private memory through a bit in
the guest physical address, making it possible for the guest to

only interact with unsafe shared memory when it intends to.
Furthermore, shared memory is only readable and writable
for the guest but not executable to avoid certain bug types.
Intel TDX makes use of Intel’s Total Memory Encryption -
Multi Key (TME-MK) to encrypt the memory of TDs. To
this end, the key ID (HKID) range of TME-MK is split into
a public and a private range, with the private range being
exclusive to the TDX module and TDs. To protect the private
memory against corruption, e.g., through Rowhammer, each
64-bit memory region can be protected with a cryptographic
MAC that is automatically validated on each memory access.
If the integrity check fails, an exception is thrown. Still, the
underlying hardware of the CPU itself and the memory sub-
system are shared across mutually untrusted TDX guests as
well as between the TEE and any host workloads.

2.3 Attacks on Trusted Execution
Both practically and scientifically, TEEs are an attractive
attack target. The reason for this is the combination of
holding the most valuable security assets on the one side
and, on the other hand, operating in a threat model that per-
mits high-privilege adversaries, e.g., attacks from the kernel
level. Consequently, numerous attacks have been published
attacking TEEs. The first side-channel attacks on SGX were
cache attacks on SGX enclaves by Brasser et al. [9] and
Götzfried et al. [16], as well as cache attacks from SGX en-
claves by Schwarz et al. [42]. Weiser et al. [54] demonstrated
an attack on RSA key generation in SGX. Moghimi et al. [35]
showed that the SGX threat model even allows amplifying
cache side channels, given the ability of the host to control
enclave execution. Wang et al. [53] presented a systematic
analysis of many side channels in the context of SGX en-
claves. Evtyushkin et al. [14] and Huo et al. [20] exploited
the pattern-history table (PHT). Similarly, Lee et al. [28] pre-
sented a side channel exploiting collisions in the branch-target
buffer (BTB). Both the PHT and the BTB were later on also
exploited in Spectre attacks [27], e.g., by Chen et al. [11]
on SGX enclaves. Other works demonstrated software-based
power side channels [32], controlled channels [57], and the
interrupt side channel [51]. Lou et al. [33] and subsequently
Gast et al. [15] investigated leakage from AMD-SEV CVMs
through performance counters. Gast et al. [15] demonstrated
several attacks, including the recovery of RSA keys as well
as the leakage of TOTP tokens and TOTP keys. Similar to
many other works, they relied on precise single-stepping of
TEEs, as we detail in Section 2.4. Fewer works explored the
possibility of attacks from the inside of TEEs [17, 26, 42, 44],
mainly focusing on side channels and Rowhammer attacks.

2.4 Single-Stepping Trusted Execution
Crucial for the success of many attacks on TEEs is the possi-
bility to reliably single-step [11,15,32,38,43,48,49,55,56,59].

Hence, single-stepping frameworks have been published both
for Intel SGX and AMD SEV [51, 56], building a corner-
stone for many sophisticated attacks [15, 32, 49, 55, 56, 59].
Van Bulck et al. [51] used the APIC timer to interrupt
SGX enclaves continuously after each executed instructions.
Wilke et al. [56] implemented a similar mechanism for AMD
SEV. In response, Intel’s TDX module contains a mitiga-
tion against single-stepping attacks [24]. The original version
of this mitigation uses the timestamp counter and instruc-
tion pointer differences to detect single-stepping attempts.
If TDX detects a single-stepping attempt, it masks all exter-
nal interrupts and single-steps the guest for a random num-
ber of instructions before returning control back to the host.
Wilke et al. [55] bypassed this initial single-stepping mitiga-
tion in Intel TDX by reducing the CPU frequency and count-
ing VM entries through a side channel. Consequently, with
TDX module version 1.5.06, Intel improved their defense by
using performance counters to more effectively detect single-
stepping attempts. While this mitigates the single-stepping
attack by Wilke et al. [55], it still leaks information about the
number of instructions the mitigation executed in the TD.

3 TDXploit

In this section, we present TDXploit. First, we detail the in-
ner workings of the Intel TDX single-stepping mitigation.
Second, we describe our novel single-stepping attack TDX-
ploit and how it exploits the mitigation. Third, we evaluate
TDXploit by evaluating it against a synthetic target and by re-
creating a previously demonstrated end-to-end attack against
the ECDSA implementation of OpenSSL. Lastly, we discuss
possible mitigations for TDXploit.

3.1 Single-Stepping Mitigation
To combat single-stepping, Intel TDX includes a mitigation
as part of the TDX module [25]. The mitigation consists of
two parts: the detection of a single-stepping attempts by the
host and the introduction of noise in case of a detected attack.

For detection of single-stepping attacks, the mitigation fo-
cuses on interrupt-based VM exits (external interrupts, non-
maskable interrupts, system management interrupts, and INIT
interrupts), as past single-stepping attacks are based on trig-
gering an external interrupt after one instruction in the guest
is executed [51]. Unlike synchronous VM exits, such as VM
calls, interrupts can occur at any time and are often required
to be handled as soon as possible. Otherwise, it might result
in the slowdown of other cores, e.g., for TLB shootdowns,
or the slowdown of external devices. Hence, interrupts are
used in existing single-stepping attacks as a simple way to
force the control back to the untrusted host at the attacker’s
will. On VMX, an interrupt-based VM exit would normally
result in control being forwarded back to the host, which then
handles the interrupt. However, with TDX all VM exits return

control to the TDX module instead. The TDX module will
eventually invoke the untrusted host to handle the exit. Intel
TDX employs two methods to detect malicious interrupts.
Which method is used depends on the guest configuration.
The first method uses a heuristic to detect potential attacks. If
the last VM entry occurred less than 2 µs to 3 µs ago and the
instruction pointer changed by less than 32 B (two times the
maximum length an instruction in x86 can have), the TDX
module assumes an attack is in progress. The time required
for a VM entry and a VM exit is highly dependent on the
CPU and the frequency the CPU is running on, with the lat-
ter being fully controllable by the untrusted host. Therefore,
this detection approach can be bypassed on CPUs that take
more than 2 µs to 3 µs to execute a VM entry and exit on their
minimum operating frequency [55].

The second detection method, Instruction-Count Single-
Step Defense (ICSSD), is Intel’s response to the aforemen-
tioned attack. ICSSD takes advantage of performance coun-
ters to determine the number of instructions executed by the
guest since the last VM entry. If this number is too low, it
decides that an attack is occurring and triggers the mitigation.
While ICSSD is significantly more reliable than the heuristic-
based approach, it is only activated if the guest is not allowed
to use performance counters. Otherwise, the mitigation falls
back to the previously described heuristic.

When a potential attack is detected by the TDX module,
noise is introduced to thwart the attack. This noise consists
of a random number of instructions, between 1 and 32, be-
ing executed in the guest. The random number is generated
through a per core 32 bit LFSR (linear-feedback shift register),
initialized only once when the TDX module is loaded. LFSRs
output the least significant bit of their state and generate new
bits through an XOR of multiple bits at fixed positions of their
internal state. To ensure that the correct number of instruc-
tions are executed in the guest, TDX uses the VMX monitor
flag to single-step the guest. During this process, all external
interrupts are masked, and control is not returned to the un-
trusted host. Consequently, the host is unable to determine
the exact number of instructions executed within the guest,
effectively mitigating single-stepping-based attacks [25].

Unlike previous single-stepping attacks on TEEs, such as
TDXdown [55] and SGX-Step [51], TDXploit does not rely
on cache invalidation for reliability. Therefore, prefetching
address translations and other information every time a guest
continues, as proposed by the AEX-Notify [12] mitigation
for SGX, would not mitigate TDXploit. Informing the guest
about frequent single-stepping attempts would allow the guest
to react accordingly to a potential attack, but in itself does not
prevent single-stepping.

3.2 Threat Model

We assume the classical TEE threat model of a compromised
host [38,43,48,51,55,56,59]. Specifically, we exploit that the

1 1: xor rax, rax; \\TDCALL leaf VMCALL
2 mov rcx, 0xff00; \\TDCALL register bitmap
3 mov r11, 42; \\VMCALL code (custom)
4 tdcall;
5 .rept 32;
6 add qword [rsi], 1; \\add to shared memory
7 .endr;
8 jmp 1b \\reset

Listing 1: Attacker TD assembly loop to leak the LFSR state.

host has full control over TD scheduling, can launch its own
host-controlled TDs, and is able to arbitrarily trigger external
interrupts, e.g., through the APIC timer. The CPU runs the
most recent version of the TDX module at the time of writing
(TDX module 1.5.06 [25]). The victim guest enforces that the
ICSSD method for single-stepping detection is enabled and
that hyper-threading is disabled. These assumptions follow
the TDX threat model provided by Intel [22], which assumes
a compromised cloud provider.

3.3 Attack
A high-level overview of our TDXploit attack is provided in
Figure 1 as a flow chart in Figure 1a and a sequence diagram
in Figure 1b visualizing the internal details of the attack. Con-
trary to previous single-stepping attacks on TEEs [51, 55, 56],
TDXploit exploits the attacker’s ability to spawn malicious
TEE instances. The attack code consists of two parts. First,
the compromised virtual machine monitor (VMM) is used to
modify the scheduling of the TDs and to trigger the single-
stepping mitigation through external interrupts. Second, an
attacker-controlled TD is used to relay information about the
current mitigation state to the VMM.

To mount the attack, first, the attacker has to recover the
LFSR state on the logical CPU core used for the attack, as
shown in the upper part of Figure 1b. As an LFSR outputs
its internal state as a random number and the updates to the
state consist of linear operations, the full state can be reversed
by observing the output. The polynomial used for the LFSR
is 0xB4BCD35C and is publicly available [25]. The 5 least
significant bits of the LFSR output plus 1 is the number of
single-steps the mitigation does before returning to the host.
The plus 1 is required to ensure that at least one instruction is
executed. To recover the output of the LFSR, we exclusively
schedule our attacker-controlled TD and continuously trigger
the mitigation. The attacker TD runs the small code gadget
depicted in Listing 1 to report the number of executed instruc-
tions to the VMM. In more detail, this step works as follows.
The attacker TD signals the VMM through a VM call that it is
ready for a measurement. To start the measurement, the VMM
sets up the APIC timer to immediately trigger an external in-
terrupt and resumes the attacker TD. As interrupts are masked
until the attacker TD is entered, the pending interrupt causes

(a) Flow Chart

(b) Sequence Diagram

Figure 1: A flow chart (Figure 1a) for a rough overview of
TDXploit and a sequence diagram Figure 1b providing more
detailed information. First, we recover the internal RNG state
by triggering the mitigation on the attacker TD and reversing
the state. Next, we schedule the attacker TD and trigger the
mitigation until the RNG state is not 1. Only when the next
random number is 1 the victim TD is scheduled.

a VM exit before the attacker TD can execute an instruction.
As no instruction is executed in the guest, the single-stepping
mitigation is triggered by ICSSD. The instructions in the
attacker TD following the VM call consist of multiple add
instructions that increase a counter residing in an unencrypted
memory location that is shared with the VMM. When control
is returned to the VMM, they can infer the number of instruc-
tions executed by the mitigation by computing the delta of
the counter in the shared memory region.

We use the least significant bit of the number of instruc-
tions executed by the mitigation for the LFSR state recovery.
While it is possible to use all 5 recovered bits for the state
recovery, this would only marginally improve the attack, as
each new mitigation trigger only reveals one new additional
bit. As we recover one bit per mitigation trigger, we schedule
the attacker TD and trigger the mitigation 32 times to recover
the full LFSR state. With the state recovered, we are able
to predict the mitigation behavior on this core. This infor-
mation can already be directly used for instruction counting
attacks on victim TDs by triggering the mitigation every time
the victim TD is scheduled. However, by abusing control
over scheduling, this can also be used to carry out single-
stepping attacks, as depicted in the lower part of Figure 1b.
Again, the attacker TD and the victim TD are scheduled to
run on the same logical core, exploiting the shared LFSR
state. The VMM constantly triggers the mitigation and sched-
ules the attacker TD until the next invocation of the mitigation
would execute exactly one instruction. At this point, the VMM
schedules the victim TD. Afterward, the VMM again sched-
ules the attacker TD until the mitigation allows for the next
single-stepping opportunity. The resulting attack, TDXploit,
is highly reliable, as the number of instructions executed is
architecturally ensured by the TDX module, removing the
possibility for unintentional zero-steps or multi-steps entirely.
Furthermore, we do not rely on any side channels, remov-
ing possible sources of noise and inaccuracies. To perform
targeted multi-steps, e.g., to skip uninteresting victim code,
the same method can be used by scheduling the victim when
the next random number equals the desired number of steps.
This provides a middle ground between the fast but coarse-
grained page fault-controlled channel and fine-grained but
slow single-stepping.

3.4 Evaluation

In this section, we evaluate the speed and accuracy of TDX-
ploit and demonstrate its feasibility in an end-to-end attack
against the ECDSA implementation of OpenSSL. As previ-
ously mentioned, the evaluation was performed on an Intel
Xeon Silver 4514Y running Ubuntu 24.04 using the TDX-
enabled software stack from Canonical [10]. In line with prior
work [55, 56], we assume a VM with a single core to ease the
implementation effort.

Accuracy In our first evaluation scenario, we use the estab-
lished [51,55,56] synthetic example of a tight loop consisting
only of nop instructions. We single-step the loop for a total
of 85000000 instructions and observe only 2 misclassifica-
tions, achieving an accuracy of >99.99 %. A single-step takes
3.7 ms (σx̄ = 0.06ms, n = 10000) on our system allowing for
270 single-steps per second.

Attack on OpenSSL In this section, we use our TDXploit
primitive to perform the end-to-end attack against the modular
reduction implementation of ECDSA curves in OpenSSL that
was presented in [55]. ECDSA is a signature scheme that
requires a nonce for each signature, which must remain secret.
In addition, the nonce must be smaller than the group order
of the ECDSA curve. One approach for generating such a
nonce is modular reduction, where an initial random value k′

is reduced until it matches the imposed size limitations. The
attack exploits that the modular reduction code of the ECDSA
implementation in OpenSSL executes a different amount of
instructions depending on the secret value k′, which leaks
information about the final nonce k used for the signature.
For the brainpoolp224r1 curve, certain instruction counts leak
the values of the 7 most significant bits of the nonce k, as
detailed in Listing 2. For brainpoolp224r1, executions where
the control flow passes Line 7 but not Line 11 correspond to
signatures with a biased nonce. Such nonce biases can be used
to recover the secret key [2]. The attack requires 33 biased
signatures, which amounts to approximately 200000 observed
signature generations due to the low probability of the event.
The vulnerability was at least present since OpenSSL version
3.2.0, and, to the best of our knowledge, there was no constant
time alternative available. OpenSSL mitigated the attack by
switching to rejection sampling starting with version 3.3.1.
To orchestrate the attack, we use the attackers’ ability to force
and observe page faults to look for a unique page fault pattern
that indicates that the vulnerable function is about to execute.
This pattern has previously been determined in an offline step.
Afterward, we single-step the victim TD until the end of the
vulnerable code section is reached, which we again infer via
page faults. For our PoC, we assume that the attacker has
already located the OpenSSL library in the GPA space of the
TD as, e.g., demonstrated in [29–31,37]. With single-stepping
we need 119.7 ms per signature without we need 0.06258 ms
per signature. Compared to the now mitigated single-stepping
attack in [55], our attack is slower by a factor of 4. We did
not further analyze the cause of the performance difference.

3.5 Mitigations
Unlike existing single-stepping attacks that are based on ex-
ternal interrupts forcing control back to the host, TDXploit
exploits the single-stepping mitigation itself to achieve re-
liable single-stepping. There are multiple parts in the TDX
single-stepping mitigation that make TDXploit possible and

1 int bn_div_fixed_top(BIGNUM* dv, rm, num,
-> divisor , BN_CTX *ctx) {

2 for (i = 0; i < loop; i++, wnumtop --) {
3 for (;;) {
4 if ((t2h < rem) ||
5 ((t2h == rem) && (t2l <= n2)))
6 break;
7 q--;
8 rem += d0;
9 if (rem < d0) //don’t let rem overflow

10 break;
11 if (t2l < d1)
12 t2h --;
13 t2l -= d1;
14 }}};
15

Listing 2: Simplified version of bn_div_fixed_top from
openssl/crypto/bn/bn_div.c. This function divides num by
divisor and is called during the nonce generation. Based on
figure from [55]

need to be changed to not only mitigate TDXploit but also
make similar future attacks more challenging.

Improved RNG LFSRs are very useful for generating num-
ber sequences, but they are very bad random number gener-
ators (RNGs), especially for security-related purposes such
as Intel’s mitigation. The linearity of LFSRs makes their in-
ternal state trivial to reverse. Furthermore, they output part of
their internal state directly as the random number. Replacing
the LFSR with a proper pseudo RNG would prevent state
recovery entirely. While LFSRs have the advantage of being
extremely fast in generating numbers, performance is not an
important factor for the RNG used in this mitigation. As the
mitigation, if triggered, results in multiple extremely expen-
sive VM entries and VM exits, the additional overhead of a
proper pseudo RNG would not significantly affect the overall
overhead of the mitigation. Furthermore, the mitigation, and
therefore the random number generation, is rarely triggered
under normal execution, which is the main reason a mitigation
with such a large overhead is even viable to begin with.

Per vCPU RNG State TDXploit relies on an attacker-
controlled TD to recover the RNG state and to skip unde-
sirable step counts. This only works because of the per-core
RNG state. Using a per TD or per TD vCPU RNG state would
prevent our attack approach, even if a bad RNG like an LFSR
is used. While the former requires slightly less memory, the
latter would work without locking. Furthermore, the TDVPS
mechanism already allows storing per TD vCPU state, mak-
ing the addition of the RNG state an easy change. However,
the StumbleStepping attack from Wilke et al. [55] might still
be used to recover the LFSR state, although its noisy signal
might make reversing the LFSR more challenging. In sum-
mary, using a per TD (vCPU) RNG state significantly reduces
the attack surface but is not sufficient on its own to protect a
weak RNG like an LFSR.

Improved RNG range A larger value range for the amount
of instructions executed by the mitigation would make it
harder for any attacker to exploit side effects of the mitigation.
In its current state, the mitigation already excludes the num-
ber 0 from its random number generation, as it would result
in no progress. We would further recommend removing at
least 1 as well, as this would result in a single-step, which is
what this mitigation is trying to actively defend against. Even
with this change, the range of noise the mitigation introduces
is very limited, with a maximum of 32 steps. We suspect
that the main reason for this low number is the enormous
overhead each additional step introduces with the currently
used stepping mechanism. Thus, we propose changing the
mechanism the TDX module uses to execute additional in-
structions inside the TD. The VMX-preemption timer could
be a promising solution. This is a counter that decrements
with every cycle executed in the guest and triggers a VM exit
when it reaches 0. Thus, the number of VM entries and exits is
constant instead of scaling with the number of executed steps.
As a result, significantly more instructions could be executed
in the guest without any additional performance overhead.
This mechanism would also significantly reduce the attack
surface for side channels that try to infer the amount of exe-
cuted instructions. As the VMX-preemption timer relies on
the time stamp counter (TSC) and not on instructions exe-
cuted, the performance counter already used for the ICSSD
detection method can be used to ensure that a certain range
of instructions were executed eliminating the possibility of
a vulnerability similar to TDXdown [55]. The preemption
timer would, therefore, only speed up the instruction exe-
cution, while the performance counter ensures that enough
instructions are executed.

An alternative to the TSC-based preemption timer would
be performance monitoring interrupts (PMIs). PMIs can be
configured to trigger whenever a performance counter over-
flows. With one performance counter already counting in-
structions retired for ICSSD, the same counter can be used to
trigger a PMI after a random number of instructions executed
when the mitigation is active. As PMIs can only be delivered
when they are not masked, the CR8 register can not be used
to mask all external interrupts. Alternatively, the "acknowl-
edge interrupt on VM exit" feature can be enabled for the
TD to avoid returning to the host, and encountered interrupts
can be buffered by the TDX module. The buffered interrupts
can then be triggered again through self-IPIs (inter-processor
interrupts) directly before returning to the host when the miti-
gation is done. Similar to the VMX-preemption timer method,
this would also not require any hardware changes while at
the same time significantly increasing the possible number
of instructions executed by the mitigation without the high
overhead of constant VM entries and VM exits.

In summary, we recommend using a secure RNG that can-
not easily be reversed to mitigate our attack and to switch to a
dedicated RNG state per TD vCPU to hedge against potential

attacks. Finally, using a larger range for the amount of instruc-
tions that can be executed by the mitigation would further
increase its security.

4 TDX Flush+Flush

In this section, we show that Flush+Flush can be used on TDX
private memory, contrary to prior findings. First, we demon-
strate that the clflush instruction ignores the HKIDs used
by the memory encryption system. In combination with the
VMM’s ability to create mappings to all memory locations,
this enables Flush+Flush attacks on arbitrary TD memory
without requiring shared memory. To demonstrate the effec-
tiveness of this attack, we perform a last-round AES T-Table
attack on OpenSSL from the host on a TDX guest, recovering
the full encryption key.

4.1 Attack
The Flush+Flush attack introduced by Gruss et al. [18] ex-
ploits the timing difference between a clflush on a cached
memory location and an uncached memory location. If the
memory location that is being flushed is in the cache, clflush
has to evict the cache line, causing an increased latency. Using
this time difference Flush+Flush can detect if a memory lo-
cation has been recently accessed. Furthermore, Flush+Flush
is fast and has no blindspot, making it a very powerful attack
primitive [41]. The main disadvantage of traditional Flush+
Flush is that it requires shared memory between the attacker
and the victim.

On Intel TDX, guest private memory is encrypted using
TME-MK, which allows the use of multiple encryption keys
specified in the upper parts of the physical address to en-
code the HKID. With TDX, any read access by the host to
a memory location encrypted with a private HKID returns
all-zero data. Returning all-zero data instead of the ciphertext
or the decryption of the ciphertext with the public HKID is
crucial for preventing ciphertext side-channel attacks [31].
Nonetheless, accessing a memory location with a different
HKID still loads the data into the cache. Since the HKID
is encoded in the physical address bits and thus influences
the cache tag, it, in principle, enables multiple decryptions of
the same memory location to reside in the cache at the same
time. However, an additional coherence mechanism flushes
any existing cache entries that only differ in the HKID. Prior
work [1, 55] exploited this mechanism to build a cache attack
where the attacker continuously loads the targeted address
with a different HKID to observe latency spikes due to the
coherence protocol. Intel implied that they plan on removing
this coherence mechanism in future CPUs [24].

While the TDX documentation implies that clflush on
TDX private memory should not be possible [24, §8.5.1], we
discovered that the clflush instruction ignores HKIDs and
flushes all cache lines related to a physical address. Prior work

60 80 100 120 140 160 180 200
0
1
2

·105

Latency [CPU cycles]

#
ca

se
s hit

miss

(a) Native

60 80 100 120 140 160 180 200
0
1
2
3

·105

Latency [CPU cycles]

#
ca

se
s hit

miss

(b) TDX

Figure 2: Flush+Flush hit-miss histograms for a regular na-
tive attack (Figure 2a) and a TDX host attacker targeting a
guest VM (Figure 2b). The miss (not cached) timings for both
scenarios are in a similar range. On average, the hit (cached)
timings for the TDX attack are 30 cycles higher, falling into
the higher end of measured hits in the native scenario, in-
creasing the hit-miss margin significantly. The increased hit
timings could be the result of overhead introduced with the
memory encryption used for TDX guest memory.

that primarily analyzed 4th generation Xeon Scalable CPUs
reported the expected clflush behavior, leading us to assume
that only 5th geneneration Xeon Scalable CPUs upwards are
affected by our attack. As TDX-enabled 4th generation Xeon
Scalable CPUs are not publicly available, we are unable to
verify this assumption.

The results of our measurements are shown in Figure 2.
Figure 2a contains the hit-miss histogram for Flush+Flush
in a native scenario without TDX. Cache misses (memory
not cached) require ∼80 cycles, and most cache hits require
∼130 cycles with outliers in the range of 135 to 180 cycles.
Figure 2b contains the hit-miss histogram for Flush+Flush on
TDX private memory with a host attacker. The host executes
clflush on the target physical memory using the zero HKID,
while the victim TD accesses the memory through its private
mapping. Similar to the native scenario, the misses are at ∼80
cycles, which is to be expected as nothing has to be done.
The hit case is at ∼160 cycles and thus significantly higher
than the ∼130 cycles required for the majority of cases in
the native scenario. As we also observed multiple instances
in the native scenario where clflush required ∼160 cycles,
this might be a less optimal case for clflush that is reliably
triggered by flushing TD private memory.

Not only is the timing increased for clflush if the private
memory is cached, but the cache line is also evicted, as shown

50 100 150 200 250
0
2
4
6

·105

Latency [CPU cycles]

#
ca

se
s L1 Host flush TD flush

Figure 3: TDX private memory access timings when the host
flushes the memory using a different HKID, when the guest
flushes the memory before the access, and when only L1
accesses are performed. The access timings after a host flush
and after a TD flush are almost identical.

in Figure 3. The L1 hit timings in the TD are at 52.4 cycles,
with the miss timings if the guest flushes its own memory at
252.5 cycles. After the host evicts the guest memory with a
different HKID, the average access time for the guest is 250.6
cycles, which is almost identical to the timings of a guest
flush. Therefore, it is likely that guest memory was evicted
by the host flush.

4.2 Evaluation
In this section, we evaluate the effectiveness of Flush+Flush
on TDs and compare it to a native attack. To determine the
potential leakage rate of Flush+Flush on TDs, we first build a
covert channel and compare it to the native case. For further
comparison, we perform an AES T-Table first-round attack on
a TD and compare it to the native attack using the OpenSSL
AES implementation. Finally, we perform a last-round attack
on a TD and recover the full AES key. We assume the threat
model described in Section 3.2.

4.2.1 Covert Channel

Our covert channel is based on our observations discussed
in Section 4.1. The TD sends data through memory accesses
and the host receives data through flushing the same memory
location. We use a time-sliced approach for data transmission,
with one bit transmitted in each time slice. For a clock, we use
the TSC, which can be accessed through rdtsc. While the
absolute TSC value of the host and the guest may differ by a
fixed offset, they still increment at the same rate [25]. We as-
sume that the sender and receiver are perfectly synchronized at
the start of the transmission as this is a separate challenge that
has already been discussed and solved in previous work [34].

To find the optimal time-slice length for our native and TDX
Flush+Flush attack, we perform our attack with decreasing
time-slice length. With a decreasing time-slice length, the raw
capacity of the transmission increases due to more bits sent in
a given time frame. At the same time, the error ratio increases
as time slices become too short to correctly transmit bits. We
use the binary symmetric channel model to compute the true

0

0.2

0.4

B
it

E
rr

or
R

at
io

0 2 4 6 8
0

2

4

Raw Capacity [Mbps]

Tr
ue

C
ap

ac
ity

[M
bp

s]

Bit Error Rate
True Capacity

(a) TDX

0

0.2

0.4

B
it

E
rr

or
R

at
io

0 2 4 6 8
0

2

4

Raw Capacity [Mbps]

Tr
ue

C
ap

ac
ity

[M
bp

s]

Bit Error Rate
True Capacity

(b) Native

Figure 4: Covert-channel true capacity and error ratio with
different raw capacities for a Flush+Flush covert channel,
executed natively (Figure 4b) and with Intel TDX with the
TD sending and the host receiving (Figure 4a). The channel
on TDX reaches its maximum true capacity of 4.6 Mbit/s at a
raw capacity of 5.6 Mbit/s and the native channel reaches its
maximum of 4.8 Mbit/s at a raw capacity of 5.9 Mbit/s.

capacity based on the error ratio and the raw capacity and
determine the optimal time-slice length based on this.

The results of these measurements are provided in Fig-
ure 4. Our native Flush+Flush attack has a true capacity of
4.8 Mbit/s (σx̄ = 0.01Mbit/s, n = 20) with an error ratio of
3.2 % (σx̄ = 0.7%, n = 20) at a raw capacity of 5.9 Mbit/s.
Our Flush+Flush attack with a host receiver and a TDX guest
sender has a true capacity of 4.6 Mbit/s (σx̄ = 0.01Mbit/s,
n = 20) with an error ratio of 2.6 % (σx̄ = 0.06%, n = 20)
at a raw capacity of 5.6 Mbit/s. The Flush+Flush on TDX is
only marginally slower than the native version, most likely
due to the slightly higher average hit-timings, as discussed
in Section 4.1 and slightly worse synchronization, due to the
lack of a shared TSC in the TDX-based attack.

4.2.2 AES T-Table Attack

To demonstrate the effectiveness of Flush+Flush on TDX pri-
vate memory, we perform an AES T-Table attack on OpenSSL.
Contrary to a native Flush+Flush, a malicious VMM can not
rely on shared memory for an attack, as shared libraries used
inside a TD would normally be loaded into private memory,
inaccessible by the host. First, the attacker has to find the page

(a) TDX (b) Native

Figure 5: Comparison of a first-round AES T-Table key re-
covery between native and TDX Flush+Flush over 10000
encryptions with a zero key. A highly visible diagonal indi-
cates a low amount of noise. The attack on the TD (Figure 5a)
performs similarly well as the native attack (Figure 5b).

containing the T-Tables of the guest’s AES implementation.
As the guest’s private memory is not readable to the host,
we use Flush+Flush to search through the guest’s physical
address space for the T-Tables. During a typical AES encryp-
tion, almost all cache lines in a T-Table are accessed. To find
the correct memory locations, we use the page offset for the
T-Tables in the AES library and search for a large amount of
cached memory that has the size of the T-Tables at these off-
sets after the AES encryption has been executed by the guest.
The execution of the AES code can be detected through differ-
ent ways, e.g., network transmissions or page fault tracking.
To filter out false positives due to other applications, we repeat
our measurements several times. After only 10 encryptions,
we can determine the correct memory location with 99.2 %
accuracy on our system. This search method is similar to the
one proposed by Gruss et al. [19] for cache template attacks.

To visualize the accuracy of the tested attacks, we perform
a first-round attack with known plaintext on one T-Table with
a zero key. The access number heatmaps for the T-Table after
10000 encryptions for both native Flush+Flush and the TDX
scenario are shown in Figure 5. The visibility of the diagonal
indicates the amount of noise each attack has. A strongly
visible diagonal means more correctly detected accesses and,
therefore, less noise. As expected, both the native Flush+Flush
and the TDX scenario perform almost identically, indicating
no significant additional noise in the TDX-based scenario.

In addition to the first-round attack, we perform a last-round
attack on a TD, assuming known ciphertext. We are able to
recover the full AES key after 8986 (σx̄ = 119, n = 100)
encryptions when attacking a TD. This number is similar to
the results of a native attack reported in previous work [41].

4.2.3 OTP Recovery

To showcase the combined capabilities of TDXploit and
Flush+Flush, we use the two primitives concurrently to attack
a vulnerable TOTP library [46]. Gast et al. [15] demonstrated

1 for (int k = 0; k < 32; k++) {
2 if (c == OTP_DEFAULT_BASE32_CHARS[k]) {
3 // c is the current character
4 block_values[j] = k;
5 found = 1;
6 break;
7 }
8 }
9

Listing 3: TOTP base32 decoding loop, executed for each
character in the input [46].

that on AMD SEV, it is possible to leak the TOTP secret
of the same TOTP library by tracking loop iterations in the
base32 decoder function. They tracked the guest by monitor-
ing performance counters while single-stepping. Although
TDX does not expose guest performance counter data to the
host, we can mount a similar attack using Flush+Flush.

Whenever the TOTP library verifies or generates a TOTP
token, the secret is base32-decoded. To decode the se-
cret, the algorithm iterates over each character and com-
pares it with the entries of an internal lookup table called
OTP_DEFAULT_BASE32_CHARS as shown in Listing 3. When-
ever the character matches the table entry, the comparison
loop breaks, and the index of the matching entry is saved.
Afterwards, the algorithm continues with the next character.

We can attack this decoding algorithm by single-stepping
and using Flush+Flush to monitor the physical memory loca-
tion of OTP_DEFAULT_BASE32_CHARS. The size of the lookup
table is 32 B, which is small enough to fit into a single cache
line. Thus, we only need to monitor a single address to detect
all accesses. For our evaluation, we assume the memory lo-
cation to be known to the attacker as it can be found through
profiling the guest’s physical memory similar to our attack
described in Section 4.2.2. While the library is comparing a
character with entries in the lookup table, we detect accesses
every 5 instructions. The processing of correct characters
causes another branch to execute, leading to a delay of 6
instructions between accesses. By distinguishing the two ac-
cess patterns, we can follow the execution of the decoding
algorithm. In addition, the data is decoded in chunks of 8 char-
acters, after which we measure an overhead of 58 instructions
before the algorithm continues processing secret characters,
which we need to consider when extracting the secret key.

When executing the attack, we experience additional cache
hits for OTP_DEFAULT_BASE32_CHARS. We assume that this
is caused by branch prediction, prefetching of the lookup ta-
ble, and out-of-order execution. We experimentally verified
this assumption by adding the serialize instruction before
the comparison, which reduced the additional cache hits sig-
nificantly. However, the detected extra accesses mostly do not
interfere with the decoding process. Even without the added
serialize instruction, we are able to correctly extract the
TOTP secret key from a single trace in 79.2 % of cases. We

Table 1: All analyzed attacks and their applicability to Host-
to-Guest, Guest-to-Host, and Guest-to-Guest attack scenarios.

Attack Host-to-Guest Guest-to-Host Guest-to-Guest

Analyzed in prior Work
HKID Coherence [1] ✓ ✗ ✗

Analyzed in our Work
Flush+Reload ✗ ✗ ✗
Flush+Flush ✓ ✗ ✗
PortSmash ✓ ✓ ✓

Prime+Probe (L1) ✓ ✓ ✓
Evict+Reload ✗ ✗ ✗

✗ denotes that this attack is not possible. ✓ denotes that this attack works. We are the
first to demonstrate all of these attacks on TDX, except for HKID coherence, which was
demonstrated in prior work [1].

achieve a 99.0 % success rate in key recovery by evaluating
three traces and deriving the key using a majority vote. The
single-stepping process takes approximately 9.1 s to generate
a single trace. Thus, the total attack time to recover the TOTP
secret is below 30 s.

This attack is only possible due to the combination of a
reliable single-stepping technique and Flush+Flush. When
only using single-stepping, it is only possible to determine the
total number of instructions executed for the translation of all
characters, as there is no way for the host to determine which
character is currently translated. When only using Flush+
Flush, the temporal resolution is not enough to differentiate
between memory access after 5 or 6 instructions, making it
not possible to determine the exact characters of the secret or
which character is currently being translated. Consequently,
this is an example of how reliable single-stepping in combi-
nation with existing primitives can be used to perform attacks
that would otherwise not be impossible.

5 Systematic Evaluation

While our single-stepping attack discussed in Section 3 can
by itself used to mount attacks, the main benefit of single-
stepping to an attacker lies in strengthening other attacks,
in particular, side-channel attacks. In this section, we look
at different side-channel attacks and their applicability and
efficacy in the context of Intel TDX and TDXploit. We discuss
the viability of the attacks in different scenarios with Intel
TDX, including the traditional host-to-guest (host attacking
a guest) scenario, as well as the malicious guest scenarios
guest-to-host (guest attacking the host) and guest-to-guest
(guest attacking another guest). We verify the viability with a
covert channel for each attack in each possible scenario.

All experiments and assumptions are based on an Intel
Xeon Silver 4514Y running a stock Ubuntu 24.04 with the
TDX changes provided by Canonical [10]. The CPU runs the
most recent version of the TDX module at the time of writing
(TDX module 1.5.06 [25]). The victim guest runs an Ubuntu
24.04 created through Canonical’s TDX support scripts [10].

For each covert channel, we provide the true capacity
based on the error rate and raw capacity, similar to previ-
ous work [34]. The covert channels are based on a time-sliced
approach using the rdtsc instruction as the clock. While host
and guest do not share the same TSC, the TSC in TDX guests
increments at the same rate as the TSC of the host [25], which
suffices for synchronization. As we only build the covert
channels to show that a given attack works, we do not further
optimize each channel beyond the point of showing that it can
correctly transmit data, i.e., the goal is not to outperform chan-
nels from prior work but only demonstrate the practicality.
The results of our analysis are summarized in Table 1.

Flush+Reload. A typical Flush+Reload [58] attack requires
shared memory between the attacker and the victim. In the
guest-to-guest scenario, there is no shared memory between
the victim and the attacker. With regular VMs, guest-to-guest
attacks with Flush+Reload can be possible through page dedu-
plication by the host. As page deduplication between different
TDs is not possible, this eliminates the possibility for Flush+
Reload between guests. Similar to the guest-to-guest scenario,
in the guest-to-host scenario, there is also no shared memory
between host and guest that holds relevant information. While
the host can provide shared memory pages with TDX, these
pages are intended to transfer data between the guest and the
host. In the host-to-guest scenario, the host has access to all
physical pages used by the guest. Despite this, the host cannot
use the private HKID used for the guest memory for an at-
tack. As accessing memory with a different HKID results in a
separate cache line being loaded, it is technically not possible
to perform Flush+Reload on a specific cache line. Instead,
as we discuss later in this section, such accesses trigger a
HKID coherence side channel. Hence, Flush+Reload is not
applicable in any of the three scenarios.

Evict+Reload. Evict+Reload [19] is based on the same
principle as Flush+Reload but replaces the flush-step with an
eviction using an eviction set. Therefore, Evict+Reload also
requires shared memory between attacker and victim, which
is not available as discussed for Flush+Reload. Hence, Evict+
Reload is not applicable in any of the three scenarios.

Flush+Flush. Similar to Flush+Reload, a traditional Flush+
Flush [18] attack is not possible in the guest-to-host and guest-
to-guest scenarios due to a lack of shared memory. Contrary
to Flush+Reload, Flush+Flush is possible in the host-to-guest
scenario, despite the lack of a shared cache line. As outlined
in Section 4, the clflush instruction ignores the HKID when
performing the flush, allowing the host to flush cache lines
belonging to private guest memory. This enables Flush+Flush
attacks on arbitrary guest physical memory by the host, with-
out requiring any shared memory. We confirmed that host-to-
guest Flush+Flush is possible and measured its capacity in

a covert channel. We achieved a true capacity of 4.6 Mbit/s,
as shown in Section 4.2.1. Note that our Flush+Flush attack
does not trigger the HKID coherence side channel and, hence,
is not mitigated by any measures taken against the HKID
coherence side channel. As we showed in Section 4.2.3, there
is also no interference between Flush+Flush and TDXploit.

PortSmash. The PortSmash [3] attack relies on contention
in the execution ports of a physical CPU core. Consequently,
PortSmash requires the attacker and the victim to run on the
same physical core at the same time, albeit on separate logical
cores. The attacker detects throughput changes on the target
execution port through victim code execution. In principle, a
TD can mitigate this attack by enforcing that SMT has to be
disabled for it to run. Similarly, the host can mitigate guest-
to-host attacks by either disabling SMT or not scheduling
sensitive code on the same physical core as TDs while they
are active. Still, we practically confirmed that host-to-guest,
guest-to-host, and guest-to-guest PortSmash attacks are
possible and built a covert channel for each scenario. For all
three attack scenarios, we use the divsd instruction, which is
handled by execution port 1 on our CPU. The true capacities
for our channels are 356.0 kbit/s (guest-to-guest), 395.9 kbit/s
(host-to-guest), and 396.0 kbit/s (guest-to-host). We observed
no interference between TDXploit and PortSmash when using
TDXploit to target a specific part of the code.

Prime+Probe (L1). An attacker can use Prime+Probe [40]
to target different caches. Initial works target the L1
cache [40], whereas later works also target inclusive last-
level caches [34]. However, recent Intel server processors
abandoned this design in favor of non-inclusive last-level
caches, which cannot be attacked by the known Prime+Probe
attacks, i.e., only Prime+Probe on the L1 cache has been
demonstrated on these CPUs so far [41]. Similarly, as we
target an Intel Xeon Silver 4514Y, which has a non-inclusive
last-level cache, like all CPUs supporting TDX, we can only
target the L1 cache. We fill the L1 cache sets with attacker
cache lines and detect any evictions caused by the victim. We
find that host-to-guest, guest-to-host, and guest-to-guest
Prime+Probe attacks against the L1 cache are possible,
as the L1 remains a hardware component shared across secu-
rity contexts and Prime+Probe does not require any shared
memory. To measure the capacity of the Prime+Probe at-
tacks, we use covert channels, achieving transmission rates
of 620.1 kbit/s (guest-to-guest), 561.0 kbit/s (host-to-guest),
and 526.8 kbit/s (guest-to-host). We observed no interference
between TDXploit and Prime+Probe when using TDXploit
to target a specific part of the code.

HKID Coherence side channel. In their security report on
TDX, Google mentions a possible attack based on a coherence
mechanism related to HKIDs [1]. When a memory location is

loaded with one HKID, all cache lines with the same physical
address and a different HKID are evicted from the cache.1

The HKID coherence side channel can be used by the host
to detect guest memory accesses, which lead to coherence-
induced changes in the cache state. The HKID coherence
side channel requires access to the victim’s memory with
different HKIDs, which is not possible from inside a TD.
Hence, we find that only the host-to-guest HKID coherence
side channel is possible. We measured the capacity of the
HKID coherence side channel in a host-to-guest scenario
covert channel and achieve a capacity of 3.0 Mbit/s.

6 Discussion & Related Work

In this section, we discuss the impact of our findings. TDX-
ploit, unlike previous single-stepping approaches, exploits the
possibility of spawning attacker-controlled TDs. With this we
can leak information from the TDX module without noise.

The possibility of malicious code inside a TEE has pre-
viously been explored by Schwarz et al. [45]. They assume
that a malicious or buggy piece of code is signed by Intel
and, therefore, allowed to run inside Intel SGX and investi-
gate the possibility of attacking the host through Prime+Probe
from inside the TEE. Consequently, the attack is significantly
more challenging for the host to detect, as it is protected by
SGX. More recent Intel CPUs no longer require enclaves
to be signed by Intel, making such attacks even more realis-
tic [21]. Van Bulck et al. [50] analyzed 8 major open-source
shielding frameworks for SGX enclaves and found 35 vulner-
abilities. Schwarz et al. [44] show that the unrestricted access
of SGX enclaves to the memory of their host application can
be abused to manipulate the host to execute arbitrary code.
This makes malware almost invisible to existing detection
methods, as the actual attacker code is hidden inside the en-
clave. Jang et al. [26] use Rowhammer to flip SGX memory
from inside the enclave, leading to a processor lockdown.
Gruss et al. [17] flip bits in host memory from within an SGX
enclave using Rowhammer. Contrary to existing Rowhammer
attacks, their attack is almost invisible to the host.

The closest work to TDXploit is TDXdown [55]. TDX-
down uses a different flaw in the TDX single-stepping mitiga-
tion to bypass it. In the initial version of the single-stepping
mitigation, an attack was detected only through heuristics,
most notably through the TSC. The TSC-based heuristic can

1While the authors mention that their attack could be seen as a Flush+
Reload or Flush+Flush attack, this naming is not consistent with the published
literature: Loading a cache line triggers coherence and, thereby, evicts one or
more other cache lines. This is not the same as cache eviction through cache
or cache-set contention, i.e., it is different from the eviction in an Evict+
Reload attack. It is also not a flush operation which specifically removes
a single specified cache line from the cache, i.e., it is also different from
the flush in Flush+Reload or Flush+Flush attacks. Hence, we believe the
attacks by Aktas et al. [1] should rather be referred to as HKID coherence
side channel to avoid confusion with other distinct and already known attack
techniques like Evict+Reload, Flush+Reload, or Flush+Flush.

be bypassed by fixing the CPU to its minimal frequency,
tricking the mitigation into thinking a large number of instruc-
tions were executed in the guest. They then applied the APIC
timer-based single-stepping technique already used in previ-
ous work, such as SGX-Step [51] and SEV-Step [56]. This
bug is mitigated in the current TDX module version through
the introduction of ICSSD [24]. Our TDXploit attack does
not bypass the TDX single-stepping mitigation but exploits
a flaw to abuse the mitigation and guarantee reliable single-
stepping. Furthermore, unlike the single-stepping introduced
in TDXdown, TDXploit works on the current version of the
TDX module with ICSSD enabled.

To mitigate the Flush+Flush attack on TD private mem-
ory, software changes are not enough. As long as the physical
memory used for TDs can be mapped by the host, Flush+Flush
can be executed on them. While it is possible to avoid Flush+
Flush for specific cases by only executing code not vulnerable
to Flush+Flush inside TDs, this does not properly mitigate the
vulnerability. The ability of TDX to run regular applications
inside TDs leads to users unaware of this issue executing
vulnerable code regardless of the existence of Flush+Flush
resilient code. Furthermore, as it is possible to run general-
purpose operating systems inside TDs, this would require all
software that could potentially leak sensitive information to be
resilient against Flush+Flush, which is impractical. Alterna-
tively, this issue can be mitigated through a simple hardware
change that makes clflush aware of HKIDs, as it seems to
be the case on 4th generation Xeon Scalable CPUs [1,55]. We
are unaware of a valid use case for clflush ignoring HKIDs.
In any case, a dedicated, page granular flushing mechanism,
as e.g. implemented by AMD SEV [5], should always be suf-
ficient. Pages that are returned to the host are already written
back to main memory by the TDX module. Pages given to the
TDX module for private memory can be written back to main
memory by the host before they are provided to the module.

The closest work to our Flush+Flush attack on TDX guests
is the HKID coherence-based attack briefly mentioned in the
Google security report on TDX [1]. The coherence protocol
allows a memory location to be in the cache with only one
HKID at a time. This can be abused to detect guest memory
accesses, as the attacker can load the memory with a public
HKID and detect memory accesses that use a private HKID
on the same memory location through the cache line evictions
enforced by the coherence mechanism. Contrary to our Flush+
Flush attack, which exploits that clflush ignores HKIDs, the
coherence-based attack exploits the current implementation
of the coherence protocol regarding HKIDs, making them
inherently different. Additionally, the Flush+Flush-based ap-
proach does not trigger cache misses on the host side, allowing
for significantly faster resets of the cache state in case of a
victim access. Finally, Intel implies in the TDX base spec-
ification that they, with the introduction of the introduction
of the TDX_FEATURES.CLFLUSH_BEFORE_ALLOC feature flag,
plan to mitigate the HKID coherence-based channel [24].

Similar to our work, Wang et al. [53] analyze multiple side
channels, including Prime+Probe, and their effectiveness on
Intel SGX. Additionally, they analyzed how the tested attacks,
in combination with the Intel SGX threat model, can be used
to build significantly stronger attacks. Rauscher et al. [41]
analyzed and compared a wide range of cache side-channel
attacks using 9 metrics on Intel Sapphire Rapids and Emer-
ald Rapids CPUs. Contrary to our work, which analyzes the
viability of various side-channel attacks on Intel TDX, their
work focuses only on cache side channels in a native scenario.
Nilsson et al. [39] created a survey of published attacks on
Intel SGX, which includes if they are SGX specific, the attack
target of each attack, and possible mitigations for each attack.

7 Conclusion

We introduced a novel technique for single-stepping attacks
on Intel TDX, named TDXploit. TDXploit exploits that an
attacker can control and predict Intel’s single-stepping mitiga-
tion. TDXploit achieves a higher (>99.99 %) single-stepping
accuracy than if there were no mitigation in the first place.
Furthermore, TDXploit is the first technique for reliable multi-
stepping. While TDXploit does not rely on any side channels,
we show that it can be combined with various side chan-
nels to mount powerful attacks: We discover a previously
unknown microarchitectural behavior with Flush+Flush on
TDX guest physical memory, allowing Flush+Flush attacks
on TDX guests without shared memory. We demonstrate
the impact of this finding by performing a full key recovery
on the OpenSSL AES T-Table implementation using Flush+
Flush, requiring only 8986 encryption traces. We also sys-
tematically evaluated 6 different state-of-the-art side-channel
attacks in the context of Intel TDX and TDXploit and found
that only PortSmash and Prime+Probe (on the L1 cache) work
in the more dangerous malicious guest scenario. However,
Flush+Flush, PortSmash, Prime+Probe, and the HKID co-
herence side channel all work to attack TDX guests from
a malicious host. Finally, we demonstrated the real-world
impact of TDXploit by re-creating a previously mitigated at-
tack on the ECSDA implementation of OpenSSL as well as
an end-to-end attack on TOTP secret keys, previously only
demonstrated with a different side channel on AMD SEV. We
conclude that further mitigations are necessary, in particular
mitigating single-stepping, which often acts as an amplifier
for side-channel attacks.

Acknowledgements

This research is supported in part by the European Research
Council (ERC project FSSec 101076409), the Austrian Sci-
ence Fund (FWF SFB project SPyCoDe 10.55776/F85), and
the BMBF (projects SASVI and AnoMed). Additional fund-
ing was provided by generous gifts from Red Hat, and Intel.

Ethics Considerations

We responsibly disclosed our findings to Intel on November
27, 2024. Intel confirmed the issue on January 22, 2025. They
plan to publish the vulnerability in August 2025. All our
experiments were done on our own machines with no code
from other users running on them.

Open Science

We plan to publish all our code used in this paper on Zen-
odo (https://doi.org/10.5281/zenodo.15536636) and
GitHub (https://github.com/isec-tugraz/TDXploit).

References

[1] Erdem Aktas, Cfir Cohen, Josh Eads, James Forshaw,
and Felix Wilhelm. Intel trust domain extensions (TDX)
security review. Technical report, Google, 2023.

[2] Martin R. Albrecht and Nadia Heninger. On Bounded
Distance Decoding with Predicate: Breaking the "Lat-
tice Barrier" for the Hidden Number Problem, 2021.

[3] Alejandro Cabrera Aldaya, Billy Bob Brumley, Sohaib
ul Hassan, Cesar Pereida García, and Nicola Tuveri. Port
Contention for Fun and Profit. In S&P, 2019.

[4] AMD. AMD SEV-SNP: Strengthening VM Iso-
lation with Integrity Protection and More, 2020.
URL: https://www.amd.com/content/dam/amd/
en/documents/epyc-business-docs/white-
papers/SEV-SNP-strengthening-vm-isolation-
with-integrity-protection-and-more.pdf.

[5] AMD. AMD64 Architecture Programmer’s Manual,
2023.

[6] AMD. AMD Secure Encrypted Virtualization (SEV),
2024. URL: https://developer.amd.com/sev/.

[7] ARM. Arm Confidential Compute Architecture,
2024. URL: https://www.arm.com/architecture/
security-features/arm-confidential-compute-
architecture.

[8] ARM. TrustZone for Arm Cortex-M Processors,
2024. URL: https://www.arm.com/technologies/
trustzone-for-cortex-a.

[9] Ferdinand Brasser, Urs Müller, Alexandra Dmitrienko,
Kari Kostiainen, Srdjan Capkun, and Ahmad-Reza
Sadeghi. Software Grand Exposure: SGX Cache At-
tacks Are Practical. In WOOT, 2017.

[10] Canonical. Intel® Trust Domain Extensions (TDX)
on Ubuntu, 2025. URL: https://github.com/
canonical/tdx.

[11] Guoxing Chen, Sanchuan Chen, Yuan Xiao, Yinqian
Zhang, Zhiqiang Lin, and Ten H Lai. SgxPectre At-
tacks: Stealing Intel Secrets from SGX Enclaves via
Speculative Execution. In EuroS&P, 2019.

[12] Scott Constable, Jo Van Bulck, Xiang Cheng, Yuan
Xiao, Cedric Xing, Ilya Alexandrovich, Taesoo Kim,
Frank Piessens, Mona Vij, and Mark Silberstein. {AEX-
Notify}: Thwarting precise {Single-Stepping} attacks
through interrupt awareness for intel {SGX} enclaves.
In USENIX Security, 2023.

[13] Victor Costan and Srinivas Devadas. Intel SGX Ex-
plained. Cryptology ePrint Archive, Report 2016/086,
2016.

[14] Dmitry Evtyushkin, Ryan Riley, Nael CSE Abu-
Ghazaleh, ECE, and Dmitry Ponomarev. BranchScope:
A New Side-Channel Attack on Directional Branch Pre-
dictor. In ASPLOS, 2018.

[15] Stefan Gast, Hannes Weissteiner, Robin Leander
Schröder, and Daniel Gruss. CounterSEVeillance:
Performance-Counter Attacks on AMD SEV-SNP. In
NDSS, 2025.

[16] Johannes Götzfried, Moritz Eckert, Sebastian Schinzel,
and Tilo Müller. Cache Attacks on Intel SGX. In Eu-
roSec, 2017.

[17] Daniel Gruss, Moritz Lipp, Michael Schwarz, Daniel
Genkin, Jonas Juffinger, Sioli O’Connell, Wolfgang
Schoechl, and Yuval Yarom. Another Flip in the Wall
of Rowhammer Defenses. In S&P, 2018.

[18] Daniel Gruss, Clémentine Maurice, Klaus Wagner, and
Stefan Mangard. Flush+Flush: A Fast and Stealthy
Cache Attack. In DIMVA, 2016.

[19] Daniel Gruss, Raphael Spreitzer, and Stefan Mangard.
Cache Template Attacks: Automating Attacks on Inclu-
sive Last-Level Caches. In USENIX Security, 2015.

[20] Tianlin Huo, Xiaoni Meng, Wenhao Wang, Chunliang
Hao, Pei Zhao, Jian Zhai, and Mingshu Li. Bluethun-
der: A 2-level Directional Predictor Based Side-Channel
Attack against SGX. In CHES, 2020.

[21] Intel. An update on 3rd Party Attestation, 2018. URL:
https://www.intel.com/content/www/us/en/
developer/articles/technical/an-update-on-
3rd-party-attestation.html.

https://doi.org/10.5281/zenodo.15536636
https://github.com/isec-tugraz/TDXploit
https://www.amd.com/content/dam/amd/en/documents/epyc-business-docs/white-papers/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://www.amd.com/content/dam/amd/en/documents/epyc-business-docs/white-papers/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://www.amd.com/content/dam/amd/en/documents/epyc-business-docs/white-papers/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://www.amd.com/content/dam/amd/en/documents/epyc-business-docs/white-papers/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://developer.amd.com/sev/
https://www.arm.com/architecture/security-features/arm-confidential-compute-architecture
https://www.arm.com/architecture/security-features/arm-confidential-compute-architecture
https://www.arm.com/architecture/security-features/arm-confidential-compute-architecture
https://www.arm.com/technologies/trustzone-for-cortex-a
https://www.arm.com/technologies/trustzone-for-cortex-a
https://github.com/canonical/tdx
https://github.com/canonical/tdx
https://www.intel.com/content/www/us/en/developer/articles/technical/an-update-on-3rd-party-attestation.html
https://www.intel.com/content/www/us/en/developer/articles/technical/an-update-on-3rd-party-attestation.html
https://www.intel.com/content/www/us/en/developer/articles/technical/an-update-on-3rd-party-attestation.html

[22] Intel. Intel Trust Domain Extensions, 2021.
URL: https://software.intel.com/content/
dam/develop/external/us/en/documents/tdx-
whitepaper-v4.pdf.

[23] Intel. Intel Software Guard Extensions (Intel SGX),
2024. URL: https://www.intel.com/content/
www/us/en/products/docs/accelerator-
engines/software-guard-extensions.html.

[24] Intel. Intel Trust Domain Extensions Mod-
ule Base Architecture Specification, 2024.
URL: https://www.intel.com/content/
www/us/en/developer/tools/trust-domain-
extensions/documentation.html.

[25] Intel. TDX Module 1.5.06 Source Code, 2024. URL:
https://github.com/intel/tdx-module.

[26] Yeongjin Jang, Jaehyuk Lee, Sangho Lee, and Taesoo
Kim. SGX-Bomb: Locking Down the Processor via
Rowhammer Attack. In SysTEX, 2017.

[27] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin,
Daniel Gruss, Werner Haas, Mike Hamburg, Moritz
Lipp, Stefan Mangard, Thomas Prescher, Michael
Schwarz, and Yuval Yarom. Spectre Attacks: Exploiting
Speculative Execution. In S&P, 2019.

[28] Sangho Lee, Ming-Wei Shih, Prasun Gera, Taesoo Kim,
Hyesoon Kim, and Marcus Peinado. Inferring Fine-
grained Control Flow Inside SGX Enclaves with Branch
Shadowing. In USENIX Security, 2017.

[29] Mengyuan Li, Luca Wilke, Jan Wichelmann, Thomas
Eisenbarth, Radu Teodorescu, and Yinqian Zhang. A
systematic look at ciphertext side channels on AMD
SEV-SNP. In S&P, 2022.

[30] Mengyuan Li, Yinqian Zhang, Zhiqiang Lin, and Yan
Solihin. Exploiting unprotected {I/O} operations in
{AMD’s} secure encrypted virtualization. In USENIX
Security, 2019.

[31] Mengyuan Li, Yinqian Zhang, Huibo Wang, Kang Li,
and Yueqiang Cheng. CIPHERLEAKS: Breaking
Constant-time Cryptography on AMD SEV via the Ci-
phertext Side Channel. In USENIX Security, 2021.

[32] Moritz Lipp, Andreas Kogler, David Oswald, Michael
Schwarz, Catherine Easdon, Claudio Canella, and
Daniel Gruss. PLATYPUS: Software-based Power Side-
Channel Attacks on x86. In S&P, 2021.

[33] Xiaoxuan Lou, Kangjie Chen, Guowen Xu, Han Qiu,
Guo Shangwei, and Tianwei Zhang. Protecting Confi-
dential Virtual Machines from Hardware Performance
Counter Side Channels. In DSN, 2024.

[34] Clémentine Maurice, Manuel Weber, Michael Schwarz,
Lukas Giner, Daniel Gruss, Carlo Alberto Boano, Stefan
Mangard, and Kay Römer. Hello from the Other Side:
SSH over Robust Cache Covert Channels in the Cloud.
In NDSS, 2017.

[35] Ahmad Moghimi, Gorka Irazoqui, and Thomas Eisen-
barth. CacheZoom: How SGX amplifies the power of
cache attacks. In CHES, 2017.

[36] Daniel Moghimi, Jo Van Bulck, Nadia Heninger, Frank
Piessens, and Berk Sunar. CopyCat: Controlled
Instruction-Level Attacks on Enclaves for Maximal Key
Extraction. In USENIX Security, 2020.

[37] Mathias Morbitzer, Manuel Huber, Julian Horsch, and
Sascha Wessel. Severed: Subverting AMD’s virtual
machine encryption. In EuroSec, 2018.

[38] Kit Murdock, David Oswald, Flavio D. Garcia,
Jo Van Bulck, Daniel Gruss, and Frank Piessens. Plun-
dervolt: Software-based Fault Injection Attacks against
Intel SGX. In S&P, 2020.

[39] Alexander Nilsson, Pegah Nikbakht Bideh, and Joakim
Brorsson. A Survey of Published Attacks on Intel SGX.
2020.

[40] Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache
Attacks and Countermeasures: the Case of AES. In
CT-RSA, 2006.

[41] Fabian Rauscher, Carina Fiedler, Andreas Kogler, and
Daniel Gruss. A Systematic Evaluation of Novel and
Existing Cache Side Channels. In NDSS, 2025.

[42] Michael Schwarz, Daniel Gruss, Samuel Weiser, Clé-
mentine Maurice, and Stefan Mangard. Malware Guard
Extension: Using SGX to Conceal Cache Attacks. In
DIMVA, 2017.

[43] Michael Schwarz, Moritz Lipp, Daniel Moghimi,
Jo Van Bulck, Julian Stecklina, Thomas Prescher, and
Daniel Gruss. ZombieLoad: Cross-Privilege-Boundary
Data Sampling. In CCS, 2019.

[44] Michael Schwarz, Samuel Weiser, and Daniel Gruss.
Practical Enclave Malware with Intel SGX. In DIMVA,
2019.

[45] Michael Schwarz, Samuel Weiser, Daniel Gruss, Clé-
mentine Maurice, and Stefan Mangard. Malware Guard
Extension: Using SGX to Conceal Cache Attacks. In
DIMVA, 2017.

[46] Cody Tilkins. GitHub – tilkinsc/COTP: A simple One
Time Password (OTP) library in C, supports C++, 2023.
URL: https://github.com/tilkinsc/COTP.

https://software.intel.com/content/dam/develop/external/us/en/documents/tdx-whitepaper-v4.pdf
https://software.intel.com/content/dam/develop/external/us/en/documents/tdx-whitepaper-v4.pdf
https://software.intel.com/content/dam/develop/external/us/en/documents/tdx-whitepaper-v4.pdf
https://www.intel.com/content/www/us/en/products/docs/accelerator-engines/software-guard-extensions.html
https://www.intel.com/content/www/us/en/products/docs/accelerator-engines/software-guard-extensions.html
https://www.intel.com/content/www/us/en/products/docs/accelerator-engines/software-guard-extensions.html
https://www.intel.com/content/www/us/en/developer/tools/trust-domain-extensions/documentation.html
https://www.intel.com/content/www/us/en/developer/tools/trust-domain-extensions/documentation.html
https://www.intel.com/content/www/us/en/developer/tools/trust-domain-extensions/documentation.html
https://github.com/intel/tdx-module
https://github.com/tilkinsc/COTP

[47] Chia-Che Tsai, Donald E Porter, and Mona Vij.
Graphene-SGX: A practical library OS for unmodified
applications on SGX. In USENIX ATC, 2017.

[48] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel
Genkin, Baris Kasikci, Frank Piessens, Mark Silberstein,
Thomas F. Wenisch, Yuval Yarom, and Raoul Strackx.
Foreshadow: Extracting the Keys to the Intel SGX King-
dom with Transient Out-of-Order Execution. In USENIX
Security, 2018.

[49] Jo Van Bulck, Daniel Moghimi, Michael Schwarz,
Moritz Lipp, Marina Minkin, Daniel Genkin, Yarom
Yuval, Berk Sunar, Daniel Gruss, and Frank Piessens.
LVI: Hijacking Transient Execution through Microar-
chitectural Load Value Injection. In S&P, 2020.

[50] Jo Van Bulck, David Oswald, Eduard Marin, Abdulla
Aldoseri, Flavio Garcia, and Frank Piessens. A Tale
of Two Worlds: Assessing the Vulnerability of Enclave
Shielding Runtimes. In CCS, 2019.

[51] Jo Van Bulck, Frank Piessens, and Raoul Strackx. SGX-
Step: A Practical Attack Framework for Precise Enclave
Execution Control. In Workshop on System Software for
Trusted Execution, 2017.

[52] Jo Van Bulck, Frank Piessens, and Raoul Strackx. Neme-
sis: Studying Microarchitectural Timing Leaks in Rudi-
mentary CPU Interrupt Logic. In CCS, 2018.

[53] Wenhao Wang, Guoxing Chen, Xiaorui Pan, Yinqian
Zhang, XiaoFeng Wang, Vincent Bindschaedler, Haixu
Tang, and Carl A Gunter. Leaky Cauldron on the Dark
Land: Understanding Memory Side-Channel Hazards in
SGX. In CCS, 2017.

[54] Samuel Weiser, Raphael Spreitzer, and Lukas Bodner.
Single Trace Attack Against RSA Key Generation in
Intel SGX SSL. In AsiaCCS, 2018.

[55] Luca Wilke, Florian Sieck, and Thomas Eisenbarth.
TDXdown: Single-Stepping and Instruction Counting
Attacks against Intel TDX. In CCS, 2024.

[56] Luca Wilke, Jan Wichelmann, Anja Rabich, and Thomas
Eisenbarth. SEV-Step: A Single-Stepping Framework
for AMD-SEV. In CHES, 2024.

[57] Yuanzhong Xu, Weidong Cui, and Marcus Peinado.
Controlled-Channel Attacks: Deterministic Side Chan-
nels for Untrusted Operating Systems. In S&P, 2015.

[58] Yuval Yarom and Katrina Falkner. Flush+Reload: a
High Resolution, Low Noise, L3 Cache Side-Channel
Attack. In USENIX Security, 2014.

[59] Ruiyi Zhang, CISPA Helmholtz Center, Lukas Gerlach,
Daniel Weber, Lorenz Hetterich, Youheng Lü, Andreas
Kogler, and Michael Schwarz. CacheWarp: Software-
based Fault Injection using Selective State Reset. In
USENIX Security, 2024.

	Introduction
	Background
	Trusted Execution Environments
	Intel TDX
	Attacks on Trusted Execution
	Single-Stepping Trusted Execution

	TDXploit
	Single-Stepping Mitigation
	Threat Model
	Attack
	Evaluation
	Mitigations

	TDX Flush+Flush
	Attack
	Evaluation
	Covert Channel
	AES T-Table Attack
	OTP Recovery

	Systematic Evaluation
	Discussion & Related Work
	Conclusion

